On the existence of equiangular tight frames
نویسندگان
چکیده
منابع مشابه
On the existence of equiangular tight frames
An equiangular tight frame (ETF) is a d × N matrix that has unit-norm columns and orthogonal rows of norm √ N/d. Its key property is that the absolute inner products between pairs of columns are (i) identical and (ii) as small as possible. ETFs have applications in communications, coding theory, and sparse approximation. Numerical experiments indicate that ETFs arise for very few pairs (d,N), a...
متن کاملTables of the existence of equiangular tight frames
A Grassmannian frame is a collection of unit vectors which are optimally incoherent. The most accessible (and perhaps most beautiful) of Grassmannian frames are equiangular tight frames (ETFs); indeed, there are infinite families of known ETFs, whereas only finitely many non-ETF Grassmannian frames are known to date. This paper surveys every known construction of ETFs and tabulates existence fo...
متن کاملTremain equiangular tight frames
We combine Steiner systems with Hadamard matrices to produce a new class of equiangular tight frames. This in turn leads to new constructions of strongly regular graphs and distance-regular antipodal covers of the complete graph.
متن کاملSteiner equiangular tight frames
We provide a new method for constructing equiangular tight frames (ETFs). The construction is valid in both the real and complex settings, and shows that many of the few previously-known examples of ETFs are but the first representatives of infinite families of such frames. It provides great freedom in terms of the frame’s size and redundancy. This method also explicitly constructs the frame ve...
متن کاملLattices from tight equiangular frames
We consider the set of all linear combinations with integer coefficients of the vectors of a unit tight equiangular (k, n) frame and are interested in the question whether this set is a lattice, that is, a discrete additive subgroup of the k-dimensional Euclidean space. We show that this is not the case if the cosine of the angle of the frame is irrational. We also prove that the set is a latti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2007
ISSN: 0024-3795
DOI: 10.1016/j.laa.2007.05.043